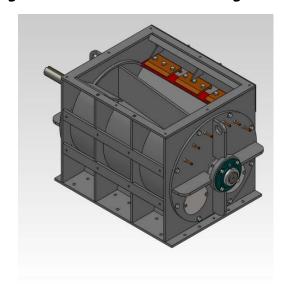
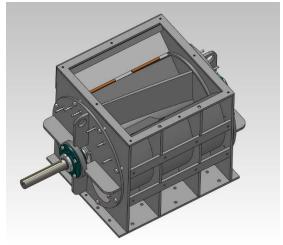


September 2011 Precision Reliability Seminar Portland, Oregon

Rotary Feeder Reliability


Rotary Feeder Reliability


- 1. Basic design, components, & terminology The Basics
- 2. Proper sizing
- 3. Proper installation
- 4. Recommended service
- 5. Trouble-shooting
- 6. Rebuilding

Rotary Feeder Reliability – The Basics

 \rightarrow Terminology

- Rotation: CW or CCW

Sizes: 14x18 to 30x45 or larger

- Rotor Helix: RH or LH

- Knives:

Single/Double

- Top/Bottom

→ RPM target

Rotary Feeder Reliability – The Basics

- → Feeders from Precision Machine are a highly precise, machined piece of equipment built to tight tolerances to assure maximum performance
 - In manufacturing, internal clearance (rotor to barrel) is held at 0.001" per side per inch of rotor diameter
 - A 30" inch diameter rotor would have a clearance of 0.015" per side
- → If the material being handled is at a temperature above ambient, Precision machines the rotor diameter to account for thermal expansion to prevent rotor lockup

Rotary Feeder Reliability – Proper Sizing

Sizing feeders - a math problem driven by key assumptions and key targets; and subject to judgment and experience

- → Desired throughput how many lbs or tons per hour
- → Material & bulk density wet or dry; mixed or pure; bulk density (in the real world of the mill...)
- → Feeding/loading under a full head of material? Intermittently fed? Variable?
- → Other factors that may enter into the math:
 - Temperature of material
 - Fed by...
 - Feeding into...

20 tons per hour 20 x 2000 = 40,000 lbs/hour

Bulk density = 15 lbs/cu ft $40,000 \div 15 = 2667$ cu ft/hr

50% pocket loading 2667 x 2 = 5334 cu ft/hr

60 min/hour 5334 ÷ 60 = 89 cu ft/min

25x30 feeder has a CFR of 5.94 $89 \div 5.94 = 14.98$ RPM, which is an acceptable speed

Rotary Feeder Reliability – Proper Installation & Start-Up

- → Part One Before Initial Start-Up
 - LOCKOUT/TAGOUT ALL POWER
 - Lubricate all bearings and gear reducers
 - Check to be sure that no tools or foreign objects are in the feeder
 - Turn drive unit by hand to check for any misalignments or obstructions
 - Check all safety devices and covers for proper installation and function
- → Part Two Initial Start-Up, Without Material
 - Reenergize power to feeder and start conveyor briefly; check for proper rotation and correct if necessary
 - Run for several hours as a break-in period; check for unusual noises, high bearing temperatures, etc
 - Stop feeder and LOCKOUT/TAGOUT ALL POWER
 - Open door and inspect knife clamps and internal clearances
- → Part Three Initial Start-Up, *With Material*
 - Reenergize power and run feeder for several minutes without material; gradually introduce material to feeder until design capacity is reached
 - Operate the feeder at design capacity for several hours; check motor amperage under load and compare to full load amperage capacity of motor
 - Stop feeder and LOCKOUT/TAGOUT ALL POWER; open door and check knife clamps and internal clearances

Rotary Feeder Reliability - Recommended Service

- → Do not...weld on the feeder
- → Do…inspect and adjust knife clearance regularly
- → Do…inspect and adjust brass end seals regularly
- → Do…periodically inspect bearings for proper lubrication
- → Do...inspect shaft seal/packing gland
- → Do…inspect rotor for wearing of the rotor vanes and tips
- → Do…replace knives if they are excessively worn

www.premach.com

Rotary Feeder Reliability – Knife Maintenance

The life of a rotary feeder depends on the maintenance of the knives!!!

- → Poor knife maintenance will:
 - Lead to premature scoring and deterioration of the barrel's chrome plating
 - Lead to a loss of shearing action which can cause large pieces to jam in the feeder
 - Lead to a build-up of pitch or other resins on feeder components
 - Lead to unequal wearing of feeder components causing poor performance
- → As knives become nicked, rounded, or improperly fitted the housing and the rotor will experience excessive wear
- → Knives can be re-ground or replaced; frequency will vary depending on run-time and type of material being handled

Rotary Feeder Reliability - Knife Maintenance

- → Visually inspect knife condition by opening the access door and examining the knife
 - Look for missing clamps or clamp bolts
 - Look for misaligned or loose knives or clamps
 - Look for chips or other damage to the knives

- → Check knife clearances using a feeler gauge and re-set clearance as appropriate
 - Clearance between knife and rotor tips should be approximately ½ of the clearance between the rotor and housing
 - Be sure to check clearances in several positions along the knife

Rotary Feeder Reliability – Brass End Seals

- → The rotor brass end seals are not as prone to misalignment or varying clearances as the knives and therefore do not need to be checked as frequently
- → Clearances are set at the factory at 0.002" 0.004"
- → See the two-page "Brass End-Seal Adjustment" handout at the back of this packet for detailed instructions on how to properly adjust clearances

Rotary Feeder Reliability – Trouble-Shooting

Symptom: Excessive material blow-by

Corrective Action:

- 1) Adjust brass seals to proper clearance
- 2) If seal adjustment doesn't reduce blow-by, may be time for a rebuild

Symptom: Feeder stalling

Corrective action:

- Brass seals may be too tight adjust to proper clearance
- Material build-up or pitch build-up use cleanouts

Symptom: Not discharging sufficient material

Corrective Action:

- 1) Check RPM likely running too fast
- 2) Check for system changes has feed rate changed?
- 3) Contact Precision to check feeder sizing

Symptom: Feeder jamming

Corrective Action:

- Check for foreign objects in feedstock or in the feeder itself
- 2) Check for dull, broken, or missing knives
- Check for oversized materials in feedstock

Rotary Feeder Reliability – Trouble-Shooting

Symptom: Feeder not turning

Corrective Action:

1) Check for broken shaft

2) Check for broken hub or bushing

3) Check for foreign object wedged in feeder

Rotary Feeder Reliability - Rebuilding

- → Indicators that it may be time to rebuild:
 - Visual inspection of the barrel shows excessive gouging or cuts in the metal
 - Complete or nearly complete wearing off of the chrome treatment to the barrel
 - Rotor tip material completely worn off and rotor-to-barrel clearance that has reached 2X to 3X the original specified clearance
- → Limitations to rebuilding
 - Barrels that have already been rebuilt two or more times likely have too little barrel material left to make rebuilding practical
 - · Barrel replacement can be an option but will increase the cost of rebuilding

Questions on Rotary Feeder Reliability?

Thanks for your Time and Attention!