

Rotary Valve Applications in Ash Handling Systems

Darren Couts
Precision Machine & Manufacturing

Rotary Valve Basics

Common design elements:

- A rotor with multiple pockets turning inside a housing/body
- Both ends of the housing/body closed up with endbells
- Bearings in the endbells
- Bi-Directional Rotation is typical
- Round, rectangular, or square inlet and discharge openings

- Throughput varies from system to system
 - Depends on boiler size, type of fuel, and other factors
- Unique challenges:
 - High temperatures
 - ► Fly ash = ambient to roughly 300° F depending on system
 - Bottom Ash = 600-700° F
 - Variable temperatures
 - Very abrasive...particularly if it gets wet

Rotary Valve Sizing

- Understanding throughput & bulk density are the keys to proper sizing
 - Typical bulk densities
 - \triangleright Fly ash = 40 lbs/ft³
 - Bottom ash = 50 lbs/ft³
- Like most other rotary valve applications, <u>slower speeds</u> <u>are better</u>
 - Typical would be 8 to 15 RPM
 - Slower speeds generally correlate to longer life and lower total-cost-of-ownership

Rotary Valve Sizing

- Sizing is a math problem...
- Control-fed or flood-fed?
 - A. Expected throughput per unit of time / bulk density = volume of material per unit of time
 - B. Valve capacity x RPM x assumed pocket fill = valve volume per minute
 - → Find a combination of B that balances with A

Rotary Valve Sizing

- Beware of the "Dimension vs. Volumetric Capacity" Trap
 - The <u>only</u> size that matters is volume
 - Expressed as cubic feet per revolution or CFR
 - ► A "ten inch rotary valve" can mean many things...
 - ► 10" rotor diameter
 - ▶ 10" round inlet opening
 - ▶ 10" overall height

Outboard Bearings

- Use of "stand-offs" to move bearings away from the body of the rotary valve
- Helps to isolate the bearings from dust or other contamination
- Helps to isolate the bearings from the high temperatures

Rotor-to-Barrel Clearance

- The tighter, the better
- Must take into account the operating temperature
 - Every rotary valve is subject to some thermal expansion
 - ➤ To avoid lock-up or rotor-onbarrel scraping, manufacturers will machine the rotor OD for the expected temperature

Abrasion-Resistant Materials

- Abrasion most often attacks the <u>barrel</u>
 - Can be prevented by investing in an upgraded barrel material
 - Most barrels are industrial hard-chromed as well
- Surprisingly, the rotors are normally less susceptible to abrasive wear
- HardOx, Tri-Braze, or other materials in the range of 500 Brinnell or 50 Rockwell C are reliable choices – balancing cost with durability
- Ceramic or other ultra-hard liners don't generally justify the investment and are susceptible to cracking or shattering on impact

Optional: Beveled Rotor Vanes

Commonly used in valves
 handling a material that can
 smear and buildup on the barrel

Not always required in ash applications

Optional: Air Purge Systems

- Using compressed air to flush the shaft seal area and to flush the space between the rotor ends and the endbells
- Fairly common on valves discharging into pneumatic conveying lines
- Usually not necessary on valves discharging into bins, screws, etc.

Operations

- For the most part, rotary valves in ash systems are a "set it and forget it" application
 - ► Not typically tied into plant-wide control systems
 - Not typically equipped with zero-speed sensors
 - Usually not equipped with variable frequency drives to control the RPM

Maintenance

- Ash is a tough application...the rotary valve will need attention
- Maintenance keys:
 - Weekly inspection
 - Signs of ash leaking around the shaft
 - Listen for any scraping or squealing noises
 - Regular maintenance (frequency depends your application)
 - Grease bearings
 - Adjust/tighten shaft seals and/or packing
 - Check for loose fasteners
 - Annual maintenance
 - Replace shaft seals and/or packing

Rebuilding / Refurbishment

- Most rotary valves can be rebuilt
- Symptoms that it is time:
 - Increased or excessive ash leakage
 - Bearing failure
- Typical scope of work:
 - Bore out housing to a new diameter
 - Rebuild rotor with new material to match housing diameter
 - Replace shaft seals and bearings

Questions?

Thank You